- Support Those Engines
- Usage Dependency
- Key features
- Data Type Mapping
- Options
- path [string]
- bucket [string]
- access_key [string]
- access_secret [string]
- endpoint [string]
- custom_filename [boolean]
- file_name_expression [string]
- filename_time_format [String]
- file_format_type [string]
- field_delimiter [string]
- row_delimiter [string]
- have_partition [boolean]
- partition_by [array]
- partition_dir_expression [string]
- is_partition_field_write_in_file [boolean]
- sink_columns [array]
- is_enable_transaction [boolean]
- batch_size [int]
- compress_codec [string]
- common options
- max_rows_in_memory [int]
- sheet_name [string]
- xml_root_tag [string]
- xml_row_tag [string]
- xml_use_attr_format [boolean]
- encoding [string]
- How to Create an Oss Data Synchronization Jobs
- Changelog
Oss file sink connector
Support Those Engines
Spark
Flink
SeaTunnel Zeta
Usage Dependency
For Spark/Flink Engine
- You must ensure your spark/flink cluster already integrated hadoop. The tested hadoop version is 2.x.
- You must ensure
hadoop-aliyun-xx.jar
,aliyun-sdk-oss-xx.jar
andjdom-xx.jar
in${SEATUNNEL_HOME}/plugins/
dir and the version ofhadoop-aliyun
jar need equals your hadoop version which used in spark/flink andaliyun-sdk-oss-xx.jar
andjdom-xx.jar
version needs to be the version corresponding to thehadoop-aliyun
version. Eg:hadoop-aliyun-3.1.4.jar
dependencyaliyun-sdk-oss-3.4.1.jar
andjdom-1.1.jar
.
For SeaTunnel Zeta Engine
- You must ensure
seatunnel-hadoop3-3.1.4-uber.jar
,aliyun-sdk-oss-3.4.1.jar
,hadoop-aliyun-3.1.4.jar
andjdom-1.1.jar
in${SEATUNNEL_HOME}/lib/
dir.
Key features
By default, we use 2PC commit to ensure exactly-once
- file format type
- text
- csv
- parquet
- orc
- json
- excel
- xml
Data Type Mapping
If write to csv
, text
file type, All column will be string.
Orc File Type
SeaTunnel Data Type | Orc Data Type |
---|---|
STRING | STRING |
BOOLEAN | BOOLEAN |
TINYINT | BYTE |
SMALLINT | SHORT |
INT | INT |
BIGINT | LONG |
FLOAT | FLOAT |
FLOAT | FLOAT |
DOUBLE | DOUBLE |
DECIMAL | DECIMAL |
BYTES | BINARY |
DATE | DATE |
TIME TIMESTAMP |
TIMESTAMP |
ROW | STRUCT |
NULL | UNSUPPORTED DATA TYPE |
ARRAY | LIST |
Map | Map |
Parquet File Type
SeaTunnel Data Type | Parquet Data Type |
---|---|
STRING | STRING |
BOOLEAN | BOOLEAN |
TINYINT | INT_8 |
SMALLINT | INT_16 |
INT | INT32 |
BIGINT | INT64 |
FLOAT | FLOAT |
FLOAT | FLOAT |
DOUBLE | DOUBLE |
DECIMAL | DECIMAL |
BYTES | BINARY |
DATE | DATE |
TIME TIMESTAMP |
TIMESTAMP_MILLIS |
ROW | GroupType |
NULL | UNSUPPORTED DATA TYPE |
ARRAY | LIST |
Map | Map |
Options
Name | Type | Required | Default | Description |
---|---|---|---|---|
path | string | yes | The oss path to write file in. | |
tmp_path | string | no | /tmp/seatunnel | The result file will write to a tmp path first and then use mv to submit tmp dir to target dir. Need a OSS dir. |
bucket | string | yes | - | |
access_key | string | yes | - | |
access_secret | string | yes | - | |
endpoint | string | yes | - | |
custom_filename | boolean | no | false | Whether you need custom the filename |
file_name_expression | string | no | “${transactionId}” | Only used when custom_filename is true |
filename_time_format | string | no | “yyyy.MM.dd” | Only used when custom_filename is true |
file_format_type | string | no | “csv” | |
field_delimiter | string | no | ‘\001’ | Only used when file_format_type is text |
row_delimiter | string | no | “\n” | Only used when file_format_type is text |
have_partition | boolean | no | false | Whether you need processing partitions. |
partition_by | array | no | - | Only used then have_partition is true |
partition_dir_expression | string | no | “${k0}=${v0}/${k1}=${v1}/…/${kn}=${vn}/“ | Only used then have_partition is true |
is_partition_field_write_in_file | boolean | no | false | Only used then have_partition is true |
sink_columns | array | no | When this parameter is empty, all fields are sink columns | |
is_enable_transaction | boolean | no | true | |
batch_size | int | no | 1000000 | |
compress_codec | string | no | none | |
common-options | object | no | - | |
max_rows_in_memory | int | no | - | Only used when file_format_type is excel. |
sheet_name | string | no | Sheet${Random number} | Only used when file_format_type is excel. |
xml_root_tag | string | no | RECORDS | Only used when file_format is xml. |
xml_row_tag | string | no | RECORD | Only used when file_format is xml. |
xml_use_attr_format | boolean | no | - | Only used when file_format is xml. |
encoding | string | no | “UTF-8” | Only used when file_format_type is json,text,csv,xml. |
path [string]
The target dir path is required.
bucket [string]
The bucket address of oss file system, for example: oss://tyrantlucifer-image-bed
access_key [string]
The access key of oss file system.
access_secret [string]
The access secret of oss file system.
endpoint [string]
The endpoint of oss file system.
custom_filename [boolean]
Whether custom the filename
file_name_expression [string]
Only used when custom_filename
is true
file_name_expression
describes the file expression which will be created into the path
. We can add the variable ${now}
or ${uuid}
in the file_name_expression
, like test_${uuid}_${now}
,
${now}
represents the current time, and its format can be defined by specifying the option filename_time_format
.
Please note that, If is_enable_transaction
is true
, we will auto add ${transactionId}_
in the head of the file.
filename_time_format [String]
Only used when custom_filename
is true
When the format in the file_name_expression
parameter is xxxx-${Now}
, filename_time_format
can specify the time format of the path, and the default value is yyyy.MM.dd
. The commonly used time formats are listed as follows:
Symbol | Description |
---|---|
y | Year |
M | Month |
d | Day of month |
H | Hour in day (0-23) |
m | Minute in hour |
s | Second in minute |
file_format_type [string]
We supported as the following file types:
text
json
csv
orc
parquet
excel
xml
Please note that, The final file name will end with the file_format_type’s suffix, the suffix of the text file is txt
.
field_delimiter [string]
The separator between columns in a row of data. Only needed by text
file format.
row_delimiter [string]
The separator between rows in a file. Only needed by text
file format.
have_partition [boolean]
Whether you need processing partitions.
partition_by [array]
Only used when have_partition
is true
.
Partition data based on selected fields.
partition_dir_expression [string]
Only used when have_partition
is true
.
If the partition_by
is specified, we will generate the corresponding partition directory based on the partition information, and the final file will be placed in the partition directory.
Default partition_dir_expression
is ${k0}=${v0}/${k1}=${v1}/.../${kn}=${vn}/
. k0
is the first partition field and v0
is the value of the first partition field.
is_partition_field_write_in_file [boolean]
Only used when have_partition
is true
.
If is_partition_field_write_in_file
is true
, the partition field and the value of it will be write into data file.
For example, if you want to write a Hive Data File, Its value should be false
.
sink_columns [array]
Which columns need be written to file, default value is all the columns get from Transform
or Source
.
The order of the fields determines the order in which the file is actually written.
is_enable_transaction [boolean]
If is_enable_transaction
is true, we will ensure that data will not be lost or duplicated when it is written to the target directory.
Please note that, If is_enable_transaction
is true
, we will auto add ${transactionId}_
in the head of the file.
Only support true
now.
batch_size [int]
The maximum number of rows in a file. For SeaTunnel Engine, the number of lines in the file is determined by batch_size
and checkpoint.interval
jointly decide. If the value of checkpoint.interval
is large enough, sink writer will write rows in a file until the rows in the file larger than batch_size
. If checkpoint.interval
is small, the sink writer will create a new file when a new checkpoint trigger.
compress_codec [string]
The compress codec of files and the details that supported as the following shown:
- txt:
lzo
none
- json:
lzo
none
- csv:
lzo
none
- orc:
lzo
snappy
lz4
zlib
none
- parquet:
lzo
snappy
lz4
gzip
brotli
zstd
none
Tips: excel type does not support any compression format
common options
Sink plugin common parameters, please refer to Sink Common Options for details.
max_rows_in_memory [int]
When File Format is Excel,The maximum number of data items that can be cached in the memory.
sheet_name [string]
Writer the sheet of the workbook
xml_root_tag [string]
Specifies the tag name of the root element within the XML file.
xml_row_tag [string]
Specifies the tag name of the data rows within the XML file.
xml_use_attr_format [boolean]
Specifies Whether to process data using the tag attribute format.
encoding [string]
Only used when file_format_type is json,text,csv,xml.
The encoding of the file to write. This param will be parsed by Charset.forName(encoding)
.
How to Create an Oss Data Synchronization Jobs
The following example demonstrates how to create a data synchronization job that reads data from Fake Source and writes it to the Oss:
For text file format with have_partition
and custom_filename
and sink_columns
# Set the basic configuration of the task to be performed
env {
parallelism = 1
job.mode = "BATCH"
}
# Create a source to product data
source {
FakeSource {
schema = {
fields {
name = string
age = int
}
}
}
}
# write data to Oss
sink {
OssFile {
path="/seatunnel/sink"
bucket = "oss://tyrantlucifer-image-bed"
access_key = "xxxxxxxxxxx"
access_secret = "xxxxxxxxxxx"
endpoint = "oss-cn-beijing.aliyuncs.com"
file_format_type = "text"
field_delimiter = "\t"
row_delimiter = "\n"
have_partition = true
partition_by = ["age"]
partition_dir_expression = "${k0}=${v0}"
is_partition_field_write_in_file = true
custom_filename = true
file_name_expression = "${transactionId}_${now}"
filename_time_format = "yyyy.MM.dd"
sink_columns = ["name","age"]
is_enable_transaction = true
}
}
For parquet file format with have_partition
and sink_columns
# Set the basic configuration of the task to be performed
env {
parallelism = 1
job.mode = "BATCH"
}
# Create a source to product data
source {
FakeSource {
schema = {
fields {
name = string
age = int
}
}
}
}
# Write data to Oss
sink {
OssFile {
path = "/seatunnel/sink"
bucket = "oss://tyrantlucifer-image-bed"
access_key = "xxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxx"
endpoint = "oss-cn-beijing.aliyuncs.com"
have_partition = true
partition_by = ["age"]
partition_dir_expression = "${k0}=${v0}"
is_partition_field_write_in_file = true
file_format_type = "parquet"
sink_columns = ["name","age"]
}
}
For orc file format simple config
# Set the basic configuration of the task to be performed
env {
parallelism = 1
job.mode = "BATCH"
}
# Create a source to product data
source {
FakeSource {
schema = {
fields {
name = string
age = int
}
}
}
}
# Write data to Oss
sink {
OssFile {
path="/seatunnel/sink"
bucket = "oss://tyrantlucifer-image-bed"
access_key = "xxxxxxxxxxx"
access_secret = "xxxxxxxxxxx"
endpoint = "oss-cn-beijing.aliyuncs.com"
file_format_type = "orc"
}
}
Multiple Table
For extract source metadata from upstream, you can use ${database_name}
, ${table_name}
and ${schema_name}
in the path.
env {
parallelism = 1
spark.app.name = "SeaTunnel"
spark.executor.instances = 2
spark.executor.cores = 1
spark.executor.memory = "1g"
spark.master = local
job.mode = "BATCH"
}
source {
FakeSource {
tables_configs = [
{
schema = {
table = "fake1"
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_bytes = bytes
c_date = date
c_decimal = "decimal(38, 18)"
c_timestamp = timestamp
c_row = {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_bytes = bytes
c_date = date
c_decimal = "decimal(38, 18)"
c_timestamp = timestamp
}
}
}
},
{
schema = {
table = "fake2"
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_bytes = bytes
c_date = date
c_decimal = "decimal(38, 18)"
c_timestamp = timestamp
c_row = {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_bytes = bytes
c_date = date
c_decimal = "decimal(38, 18)"
c_timestamp = timestamp
}
}
}
}
]
}
}
sink {
OssFile {
bucket = "oss://whale-ops"
access_key = "xxxxxxxxxxxxxxxxxxx"
access_secret = "xxxxxxxxxxxxxxxxxxx"
endpoint = "https://oss-accelerate.aliyuncs.com"
path = "/tmp/fake_empty/text/${table_name}"
row_delimiter = "\n"
partition_dir_expression = "${k0}=${v0}"
is_partition_field_write_in_file = true
file_name_expression = "${transactionId}_${now}"
file_format_type = "text"
filename_time_format = "yyyy.MM.dd"
is_enable_transaction = true
compress_codec = "lzo"
}
}
Changelog
2.2.0-beta 2022-09-26
- Add OSS Sink Connector
2.3.0-beta 2022-10-20
- [BugFix] Fix the bug of incorrect path in windows environment (2980)
- [BugFix] Fix filesystem get error (3117)
- [BugFix] Solved the bug of can not parse ‘\t’ as delimiter from config file (3083)
Next version
- [BugFix] Fixed the following bugs that failed to write data to files (3258)
- When field from upstream is null it will throw NullPointerException
- Sink columns mapping failed
- When restore writer from states getting transaction directly failed
- [Improve] Support setting batch size for every file (3625)
- [Improve] Support file compress (3899)