RocketMQ source connector
Support Apache RocketMQ Version
- 4.9.0 (Or a newer version, for reference)
Support These Engines
Spark
Flink
SeaTunnel Zeta
Key Features
Description
Source connector for Apache RocketMQ.
Source Options
Name | Type | Required | Default | Description |
---|---|---|---|---|
topics | String | yes | - | RocketMQ topic name. If there are multiple topics , use , to split, for example: "tpc1,tpc2" . |
name.srv.addr | String | yes | - | RocketMQ name server cluster address. |
acl.enabled | Boolean | no | false | If true, access control is enabled, and access key and secret key need to be configured. |
access.key | String | no | ||
secret.key | String | no | When ACL_ENABLED is true, secret key cannot be empty. | |
batch.size | int | no | 100 | RocketMQ consumer pull batch size |
consumer.group | String | no | SeaTunnel-Consumer-Group | RocketMQ consumer group id , used to distinguish different consumer groups. |
commit.on.checkpoint | Boolean | no | true | If true the consumer’s offset will be periodically committed in the background. |
schema | no | - | The structure of the data, including field names and field types. | |
format | String | no | json | Data format. The default format is json. Optional text format. The default field separator is “,”.If you customize the delimiter, add the “field.delimiter” option. |
field.delimiter | String | no | , | Customize the field delimiter for data format |
start.mode | String | no | CONSUME_FROM_GROUP_OFFSETS | The initial consumption pattern of consumers,there are several types: [CONSUME_FROM_LAST_OFFSET],[CONSUME_FROM_FIRST_OFFSET],[CONSUME_FROM_GROUP_OFFSETS],[CONSUME_FROM_TIMESTAMP],[CONSUME_FROM_SPECIFIC_OFFSETS] |
start.mode.offsets | no | |||
start.mode.timestamp | Long | no | The time required for consumption mode to be “CONSUME_FROM_TIMESTAMP”. | |
partition.discovery.interval.millis | long | no | -1 | The interval for dynamically discovering topics and partitions. |
common-options | config | no | - | Source plugin common parameters, please refer to Source Common Options for details. |
start.mode.offsets
The offset required for consumption mode to be “CONSUME_FROM_SPECIFIC_OFFSETS”.
for example:
start.mode.offsets = {
topic1-0 = 70
topic1-1 = 10
topic1-2 = 10
}
Task Example
Simple:
Consumer reads Rocketmq data and prints it to the console type
env {
parallelism = 1
job.mode = "BATCH"
}
source {
Rocketmq {
name.srv.addr = "rocketmq-e2e:9876"
topics = "test_topic_json"
result_table_name = "rocketmq_table"
schema = {
fields {
id = bigint
c_map = "map<string, smallint>"
c_array = "array<tinyint>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(2, 1)"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
}
}
transform {
# If you would like to get more information about how to configure seatunnel and see full list of transform plugins,
# please go to https://seatunnel.apache.org/docs/category/transform
}
sink {
Console {
}
}
Specified format consumption Simple:
When I consume the topic data in json format parsing and pulling the number of bars each time is 400, the consumption starts from the original location
env {
parallelism = 1
job.mode = "BATCH"
}
source {
Rocketmq {
name.srv.addr = "localhost:9876"
topics = "test_topic"
result_table_name = "rocketmq_table"
start.mode = "CONSUME_FROM_FIRST_OFFSET"
batch.size = "400"
consumer.group = "test_topic_group"
format = "json"
format = json
schema = {
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
}
}
transform {
# If you would like to get more information about how to configure seatunnel and see full list of transform plugins,
# please go to https://seatunnel.apache.org/docs/category/transform
}
sink {
Console {
}
}
Specified timestamp Simple:
This is to specify a time to consume, and I dynamically sense the existence of a new partition every 1000 milliseconds to pull the consumption
env {
parallelism = 1
spark.app.name = "SeaTunnel"
spark.executor.instances = 2
spark.executor.cores = 1
spark.executor.memory = "1g"
spark.master = local
job.mode = "BATCH"
}
source {
Rocketmq {
name.srv.addr = "localhost:9876"
topics = "test_topic"
partition.discovery.interval.millis = "1000"
start.mode.timestamp="1694508382000"
consumer.group="test_topic_group"
format="json"
format = json
schema = {
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
}
}
transform {
# If you would like to get more information about how to configure seatunnel and see full list of transform plugins,
# please go to https://seatunnel.apache.org/docs/category/transform
}
sink {
Console {
}
}